Secrets To Ace The Ap Language Synthesis Essay

Fault vs responsibility by point method Top 21 interview questions and answers for school

Lipschitz's condition makes simple geometrical sense. Let's take not a function graph of y=f (x) two any points of M1 and M2 with coordinates (x1, f (x) and (x2, f (x). Let's write the equation of the straight line passing through these points:

Especially quickly process of consecutive approximations if in  point the derivative of the  (x) function addresses in zero meets. In this case as approaching ,   value (x) aspires to zero. As:

The formulated theorem makes very simple sense. Let's say that the  function carries out display of a point x to a point of y= (x). Then Lipschitz's condition from constant  <1 means that the  display is squeezing: the distance between points of x1 and x2 is more, than distance between their images y1= (x and y2= (x.

The found point is interesting to that it is the only general point for all pieces of the constructed sequence Using a continuity of function f (x), we will prove that it is a root of the equation of f (x) =

Convergence of iterative sequence to an equation root (it can be used for approximate definition of a root with any degree of accuracy. For this purpose it is necessary to carry out enough iterations only.

The method of tangents connected with a name of I. Newton is one of the most effective numerical methods of the solution of the equations. The idea of a method is very simple. Let's take a derivative point of x0 and we will write down in it the tangent equation to a function graph of f (x):

The first problem can be solved, having broken this interval into rather large number of intervals where the equation would have exactly one root: on the ends of intervals had values of different signs. There where this condition is not satisfied, to cast away those intervals.

The most universal is the method of halving (dichotomy): he only demands a function continuity. Other methods impose stronger restrictions. In many cases this advantage of a method of a fork can be essential.

while in the Newton method the mistake decreases quicker (corresponding to  =. But in a method on each iteration it is necessary to calculate both function, and a derivative, and in a method of secants – only function. Therefore at the identical volume of calculation in a method of secants it is possible to make twice more iterations and to receive higher precision. That is more acceptable at numerical calculations on the COMPUTER, than a method of tangents.

From all ways with what it is possible (to transform the equation to a look (we choose what provides the simplest creation of schedules of y1=1 (x) and y2=2(x). In particular it is possible to take 2(x) = 0 and then we will come to creation of a function graph (which points of intersection with direct y2=2(x)=0, i.e. with abscissa axis, and are required roots of the equation (.